
A Standard Event Class for Monte Carlo Generators

L.A. Garren1, M. Fischler1,
1(Fermi National Accelerator Laboratory, Batavia, Illinois 60510, U.S.A.)

Abstract

StdHepC++[1] is a CLHEP[2] Monte Carlo event class library which provides a common

interface to Monte Carlo event generators. This work is an extensive redesign of the StdHep

Fortran interface to use the full power of object oriented design. A generated event maps

naturally onto the Directed Acyclic Graph concept and we have used the HepMC classes

to implement this. The full implementation allows the user to combine events to simulate

beam pileup and access them transparently as though they were a single event.

Keywords: clhep, stdhep

1 Introduction

As is well known, every Monte Carlo generator has its own interface and particle de�nitions. Yet

users need to process information from various generators in a standard way. This problem was

previously solved by use of the HEPEVT[3, 4] common block and the PDG standard particle

numbering scheme[5].

As physicists and Monte Carlo generators move from Fortran to C++, there is a need

for the same functionality in C++. Further, events and particles are naturally described as

objects.

The �rst implementation of StdHepC++[1] was essentially a C++ translation of the

HEPEVT common block. This paper describes the development of StdHepC++ to utilize the

full power of C++.

2 The Code

2.1 Philosophy

The event tree can naturally be represented as a directed acyclic graph (DAG), where the

interaction points are nodes on the graph and the particles are lines connecting the nodes. This

provides a natural method for determining parent/child relationships and allows for an arbitray

number of parents and children at each node. An acyclic graph does not allow a closed directed

cycle.

A run is logically a sequence of events. To allow for multiple interactions, an event is a

collection of generated events. A generated event contains vertices which contain particles.

The HepMC[6] container GenEvent class has the appropriate content and navigation

properties and is shared by StdHep as the DAG representing a collision. Our implementation

adds functionality to HepMC.

2.2 Classes

The main StdHepC++ classes are HepMC::GenParticle, HepMC::GenVertex, HepMC::GenEvent,

StdHep::StdEvent, and StdHep::Run. In addition, StdHepC++ utilizes the HepPDT classes

described elsewhere[7].

HepMC::GenParticle contains the volatile particle information: HepLorentzVector mo-

mentum, generated mass, polarization, 
ow information (e.g. color 
ow), Particle ID, status

code, pointers to the production and decay vertices, and iterators. In addition, GenParticle

normally has a pointer to HepPDT::ParticleData and may have a pointer to a customized Hep-

PDT::DecayData to force a non-standard decay tree. Methods exist to return the old HEPEVT



information (e.g., mother, second mother, �rst daughter, last daughter) and return a vector of

pointers to parents, ancestors, children, and descendants.

HepMC::GenVertex contains a HepLorentzVector position, a set of pointers to incoming

particles (parents), a set of pointers to outgoing particles (children), and vertex and particle

iterators.

HepMC::GenEvent contains a set of pointers to vertices, an event number, a signal pro-

cess ID (e.g. Pythia process 97), a pointer to the signal process vertex, a collision number,

the random number state, and vertex and particle iterators. All information available from

GenVertex or GenParticle can also be accessed from GenEvent.

StdHep::StdEvent contains a vector of pointers to HepMC::GenEvent, a separate event

number, and vertex and particle iterators. StdEvent has methods to return pointers to parents,

ancestors, children, and descendants, as well as methods to return all information available

from GenEvent, GenVertex, and GenParticle. There are also methods to return the number of

particles, vertices, and collisions, and a particular particle or vertex in the event.

StdHep::Run contains event-independent information, such as a run identi�er, the num-

ber of events to generate, the number of events actually generated, the number of events written

to I/O, the nominal center of mass energy, the cross-section, and random number seeds. This

class is easily extended to provide I/O methods.

2.3 Methods

Basic methods include class constructors, copy constructors, and accessors and modi�ers for

every element of the classes. Utility methods include isParent, isChild, and methods to re-

turn various collections of related particles, e.g., descendants, stableDescendants, and charged-

StableDescendants. These methods can be used from GenParticle, GenVertex, GenEvent, and

StdEvent. Descendants and ancestors can also be easily traversed using the particle and vertex

iterators.

Methods exist to translate the HEPEVT common block to StdHepC++. Because genera-

tor information is lost when �lling the HEPEVT common block, methods also exist to translate

directly from Pythia, Herwig, Isajet, QQ, and EVTGEN to StdHepC++.

Simple I/O methods are provided.

3 Conclusion

There is a strong need for a C++ standard Monte Carlo generator interface. StdHepC++ is

a natural object-oriented implementation of such an interface. At present, we have working

examples which integrate StdHepC++ with the Fortran versions of Herwig, Pythia, and Isajet.

References

[1] StdHepC++: http://www-pat.fnal.gov/stdhep/c++/.

[2] CLHEP: http://wwwinfo.cern.ch/asd/lhc++/clhep/.

[3] T. Sj�ostrand et al., in \Z physics at LEP1", CERN 89-08, vol. 3, p.327.

[4] T. Sj�ostrand, \Interfacing four-fermion generators with QCD generators", Workshop on

Physics at LEP2, (Jan. to Oct. 1995).

[5] Particle Data Group: Groom, D.E. et al., The European Physical Journal C3, (2000) 205,

http://www-pdg.lbl.gov/mc_particle_id_contents.html.

[6] M. Dobbs, J.B. Hansen, \The HepMC C++ Monte Carlo Event Record for High Energy

Physics", Computer Physics Communications, Vol. 134 (2001) 41-46.

[7] L.A. Garren et al., HepPDT: encapsulating the Particle Data Table, these proceedings.


